
New Input System for Realistic Car Controller V3.53

RCC_InputManager is responsible for receiving player inputs via Unity’s New Input System.

Inputs in this class has been used for controlling the vehicles and the cameras.

Inputs in the RCC_InputManager and input types (axes/buttons/vectors) have been

explained in the table below;

Input Name Input Type Button / Axis Info

Throttle Axis 0f, 1f W, Right Trigger

Brake Axis 0f, 1f S, Left Trigger

Steering Axis -1f, 1f A/D, Left Stick Left,

Left Stick Right,

Mouse X

Handbrake Axis 0f, 1f Space, South Button

NOS/Boost Axis 0f, 1f F, East Button

Gear Shift Up Button Left Shift, Right

Trigger

Gear Shift Down Button Left CTRL, Left

Trigger

Low Beam Lights Button L, D-Pad Up

High Beam Lights Button K, Left Stick Press

Indicator Hazard Button Z, D-Pad Down

Indicator Left Button Q, D-Pad Left

Indicator Right Button E, D-Pad Right

Start / Stop Engine Button I, North Button

Trailer Detach Button T, Right Stick Press Not used for

gamepads, and

mobile

Orbit 2D Vector Mouse Delta

X/Mouse Delta Y,

Right Stick

Change Camera Button C, Left Stick Press

Look Back Button B, West Button

Slow Motion Button G, null Not used for

gamepads, and

mobile

Record Button P, null Not used for

gamepads, and

mobile

Replay Button R, null Not used for

gamepads, and

mobile

Currently added controller types are

• Keyboard & Mouse

• Gamepads

• Mobile (Not using this input system)

• Logitech Steering Wheel (Requires SDK and integration package)

• Oculus Quest 1 / 2

RCC_InputActions as Input Actions

New Input System is using the Input Actions, which can be customized without any code.

Each input can be customized with the scheme. You can access default Input Actions of the

RCC from the Resources → RCC_InputActions.

RCC_InputActions have three action maps for vehicles, cameras, and optional. Each

action map has proper inputs for keyboard & mouse, gamepads.

Mobile controller is using my own input system instead of the new input manager. Each UI

controller button has “RCC_UIController.cs” script for inputs. These buttons feeds

RCC_InputManager with normalized float values. You can adjust UI buttons sensitivity and

gravity from the RCC Settings. Switching mobile controller to the new input manager is

easy, however I don’t recommend to do this. Because UI buttons will simulate gamepad

buttons in this case.

If you want to switch mobile controller to the new input system, UI buttons must be

simulating the gamepad inputs. Each UI button should have a script named

“OnScreenButton”. Simulated button of the gamepad can be changed from this

component. Joystick is using “OnScreenStick” script.

How to Add New Inputs, Change Inputs, Remove

Inputs

Adding, changing on removing inputs directly from the RCC_InputActions, which can be

found in the Resources folder of the RCC. Double click the RCC_InputActions to open up

the input actions window. There are two controller schemes (keyboard/mouse, and

gamepads). You may want to select “all controller schemes” to see all inputs. Do not change

the name of the any action map, or action. Otherwise, it will generate new C# script with

different variables. Reference scripts will not compile and editor will throw many errors.

Each action has child groups for wide range usement. For example, throttle has three child

groups for wasd keys, arrow keys, and gamepad keys. Keys can be changed, or can be

added here with the new group. To create a new group, click the plus sign near the action

name. Select your positive and negative buttons, and you are done! To remove a group, right

click it and click delete. In order to save changes, click “Save Asset” button at top of the

window. Also you may want to enable “Auto Save” too.

How the RCC_InputManager Works?

RCC_InputManager is receiving player inputs with the Unity’s New Input System. In old

system, inputs were using Input.GetKey, Input.GetAxis, Input.GetButton methods. They

were many lines for each controller types, and hardcoded as well. PS4 controller has

different inputs, Xbox controller has different inputs, keyboard has different inputs. Instead of

using many hardcoded lines, only one line will do the whole job with the new Input System.

RCC_InputManager is listening all events on the RCC_InputActions. For example, if player

pushes start/stop engine, “StartStopEngine_performed()” event will be fired. And

whatever listens this event, gets notified. RCC_CarControllerV3 is listening this event too.

When player pushes that button, “RCC_InputManager_OnStartStopEngine()” in

RCC_CarControllerV3 will be fired and corresponding function will be played. In this case,

engine will stop, or start.

Same things goes for axis too. There are positive and negative buttons. When player pushes

the positive button, maximum range of the axis will be reached. When player pushes the

negative button, minimum range of the axis will be reached. When player doesn’t push any

buttons, it will be at center. For example, when player pushes right steering button, axis will

be 1f, and -1 for the left steering. 0 will be center.

RCC_CarControllerV3 and RCC_Camera scripts are listening events and receiving axis

inputs from the RCC_InputManager.

