Compare commits

...

3 Commits

Author SHA1 Message Date
bbf07cc233 Готовая реализация 2025-07-29 14:19:18 +03:00
95b0d059ce Полное управление шаговыми моторами 2025-07-28 15:00:53 +03:00
aa36b579a4 PID 2025-07-28 11:13:06 +03:00
10 changed files with 451 additions and 226 deletions

19
.vscode/iar-vsc.json vendored Normal file
View File

@ -0,0 +1,19 @@
{
"workspace": {
"path": "${workspaceFolder}\\Robot_balancer\\Robot_balancer.eww"
},
"workspaces": {
"${workspaceFolder}\\Robot_balancer\\Robot_balancer.eww": {
"configs": {
"${workspaceFolder}\\Robot_balancer\\ACAR\\ACAR.ewp": "Debug",
"${workspaceFolder}\\Robot_balancer\\PID\\PID.ewp": "Debug"
},
"selected": {
"path": "${workspaceFolder}\\Robot_balancer\\PID\\PID.ewp"
}
}
},
"workbench": {
"path": "C:\\iar\\ewarm-9.60.3"
}
}

View File

@ -1,105 +1,105 @@
/**
******************************************************************************
* @file system_stm32g4xx.c
* @author MCD Application Team
* @brief CMSIS Cortex-M4 Device Peripheral Access Layer System Source File
*
* This file provides two functions and one global variable to be called from
* user application:
* - SystemInit(): This function is called at startup just after reset and
* before branch to main program. This call is made inside
* the "startup_stm32g4xx.s" file.
*
* - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
* by the user application to setup the SysTick
* timer or configure other parameters.
*
* - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
* be called whenever the core clock is changed
* during program execution.
*
* After each device reset the HSI (16 MHz) is used as system clock source.
* Then SystemInit() function is called, in "startup_stm32g4xx.s" file, to
* configure the system clock before to branch to main program.
*
* This file configures the system clock as follows:
*=============================================================================
*-----------------------------------------------------------------------------
* System Clock source | HSI
*-----------------------------------------------------------------------------
* SYSCLK(Hz) | 16000000
*-----------------------------------------------------------------------------
* HCLK(Hz) | 16000000
*-----------------------------------------------------------------------------
* AHB Prescaler | 1
*-----------------------------------------------------------------------------
* APB1 Prescaler | 1
*-----------------------------------------------------------------------------
* APB2 Prescaler | 1
*-----------------------------------------------------------------------------
* PLL_M | 1
*-----------------------------------------------------------------------------
* PLL_N | 16
*-----------------------------------------------------------------------------
* PLL_P | 7
*-----------------------------------------------------------------------------
* PLL_Q | 2
*-----------------------------------------------------------------------------
* PLL_R | 2
*-----------------------------------------------------------------------------
* Require 48MHz for RNG | Disabled
*-----------------------------------------------------------------------------
*=============================================================================
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
******************************************************************************
* @file system_stm32g4xx.c
* @author MCD Application Team
* @brief CMSIS Cortex-M4 Device Peripheral Access Layer System Source File
*
* This file provides two functions and one global variable to be called from
* user application:
* - SystemInit(): This function is called at startup just after reset and
* before branch to main program. This call is made inside
* the "startup_stm32g4xx.s" file.
*
* - SystemCoreClock variable: Contains the core clock (HCLK), it can be used
* by the user application to setup the SysTick
* timer or configure other parameters.
*
* - SystemCoreClockUpdate(): Updates the variable SystemCoreClock and must
* be called whenever the core clock is changed
* during program execution.
*
* After each device reset the HSI (16 MHz) is used as system clock source.
* Then SystemInit() function is called, in "startup_stm32g4xx.s" file, to
* configure the system clock before to branch to main program.
*
* This file configures the system clock as follows:
*=============================================================================
*-----------------------------------------------------------------------------
* System Clock source | HSI
*-----------------------------------------------------------------------------
* SYSCLK(Hz) | 16000000
*-----------------------------------------------------------------------------
* HCLK(Hz) | 16000000
*-----------------------------------------------------------------------------
* AHB Prescaler | 1
*-----------------------------------------------------------------------------
* APB1 Prescaler | 1
*-----------------------------------------------------------------------------
* APB2 Prescaler | 1
*-----------------------------------------------------------------------------
* PLL_M | 1
*-----------------------------------------------------------------------------
* PLL_N | 16
*-----------------------------------------------------------------------------
* PLL_P | 7
*-----------------------------------------------------------------------------
* PLL_Q | 2
*-----------------------------------------------------------------------------
* PLL_R | 2
*-----------------------------------------------------------------------------
* Require 48MHz for RNG | Disabled
*-----------------------------------------------------------------------------
*=============================================================================
******************************************************************************
* @attention
*
* Copyright (c) 2019 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/** @addtogroup CMSIS
* @{
*/
* @{
*/
/** @addtogroup stm32g4xx_system
* @{
*/
* @{
*/
/** @addtogroup STM32G4xx_System_Private_Includes
* @{
*/
* @{
*/
#include "stm32g4xx.h"
#if !defined (HSE_VALUE)
#define HSE_VALUE 24000000U /*!< Value of the External oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined(HSE_VALUE)
#define HSE_VALUE 8000000U /*!< Value of the External oscillator in Hz */
#endif /* HSE_VALUE */
#if !defined (HSI_VALUE)
#define HSI_VALUE 16000000U /*!< Value of the Internal oscillator in Hz*/
#endif /* HSI_VALUE */
#if !defined(HSI_VALUE)
#define HSI_VALUE 16000000U /*!< Value of the Internal oscillator in Hz*/
#endif /* HSI_VALUE */
/**
* @}
*/
* @}
*/
/** @addtogroup STM32G4xx_System_Private_TypesDefinitions
* @{
*/
* @{
*/
/**
* @}
*/
* @}
*/
/** @addtogroup STM32G4xx_System_Private_Defines
* @{
*/
* @{
*/
/************************* Miscellaneous Configuration ************************/
/* Note: Following vector table addresses must be defined in line with linker
@ -114,117 +114,160 @@
in Sram else user remap will be done in Flash. */
/* #define VECT_TAB_SRAM */
#if defined(VECT_TAB_SRAM)
#define VECT_TAB_BASE_ADDRESS SRAM_BASE /*!< Vector Table base address field.
This value must be a multiple of 0x200. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
This value must be a multiple of 0x200. */
#define VECT_TAB_BASE_ADDRESS SRAM_BASE /*!< Vector Table base address field. \
This value must be a multiple of 0x200. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field. \
This value must be a multiple of 0x200. */
#else
#define VECT_TAB_BASE_ADDRESS FLASH_BASE /*!< Vector Table base address field.
This value must be a multiple of 0x200. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field.
This value must be a multiple of 0x200. */
#endif /* VECT_TAB_SRAM */
#endif /* USER_VECT_TAB_ADDRESS */
/******************************************************************************/
/**
* @}
*/
#define VECT_TAB_BASE_ADDRESS FLASH_BASE /*!< Vector Table base address field. \
This value must be a multiple of 0x200. */
#define VECT_TAB_OFFSET 0x00000000U /*!< Vector Table base offset field. \
This value must be a multiple of 0x200. */
#endif /* VECT_TAB_SRAM */
#endif /* USER_VECT_TAB_ADDRESS */
/******************************************************************************/
/**
* @}
*/
/** @addtogroup STM32G4xx_System_Private_Macros
* @{
*/
* @{
*/
/**
* @}
*/
* @}
*/
/** @addtogroup STM32G4xx_System_Private_Variables
* @{
*/
/* The SystemCoreClock variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetHCLKFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
Note: If you use this function to configure the system clock; then there
is no need to call the 2 first functions listed above, since SystemCoreClock
variable is updated automatically.
*/
uint32_t SystemCoreClock = HSI_VALUE;
* @{
*/
/* The SystemCoreClock variable is updated in three ways:
1) by calling CMSIS function SystemCoreClockUpdate()
2) by calling HAL API function HAL_RCC_GetHCLKFreq()
3) each time HAL_RCC_ClockConfig() is called to configure the system clock frequency
Note: If you use this function to configure the system clock; then there
is no need to call the 2 first functions listed above, since SystemCoreClock
variable is updated automatically.
*/
uint32_t SystemCoreClock = HSI_VALUE;
const uint8_t AHBPrescTable[16] = {0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U, 2U, 3U, 4U, 6U, 7U, 8U, 9U};
const uint8_t APBPrescTable[8] = {0U, 0U, 0U, 0U, 1U, 2U, 3U, 4U};
const uint8_t AHBPrescTable[16] = {0U, 0U, 0U, 0U, 0U, 0U, 0U, 0U, 1U, 2U, 3U, 4U, 6U, 7U, 8U, 9U};
const uint8_t APBPrescTable[8] = {0U, 0U, 0U, 0U, 1U, 2U, 3U, 4U};
/**
* @}
*/
* @}
*/
/** @addtogroup STM32G4xx_System_Private_FunctionPrototypes
* @{
*/
* @{
*/
/**
* @}
*/
* @}
*/
/** @addtogroup STM32G4xx_System_Private_Functions
* @{
*/
* @{
*/
/**
* @brief Setup the microcontroller system.
* @param None
* @retval None
*/
* @brief Setup the microcontroller system.
* @param None
* @retval None
*/
void SystemClockInit()
{
// 1. Включаем HSE
RCC->CR |= RCC_CR_HSEON;
while (!(RCC->CR & RCC_CR_HSERDY))
;
// 2. Отключаем PLL
RCC->CR &= ~RCC_CR_PLLON;
while (RCC->CR & RCC_CR_PLLRDY)
;
// 3. Устанавливаем источник PLL — HSE
RCC->PLLCFGR &= ~RCC_PLLCFGR_PLLSRC;
RCC->PLLCFGR |= RCC_PLLCFGR_PLLSRC_HSE;
// 4. Настраиваем PLLM, PLLN, PLLR
RCC->PLLCFGR =
(1U << RCC_PLLCFGR_PLLM_Pos) | // PLLM = 2 (код 1)
(85U << RCC_PLLCFGR_PLLN_Pos) | // PLLN = 85
(0U << RCC_PLLCFGR_PLLR_Pos) | // PLLR = 2 (код 0)
RCC_PLLCFGR_PLLREN | // Включаем PLLR
RCC_PLLCFGR_PLLSRC_HSE; // Источник HSE
// 5. Устанавливаем FLASH задержку (4 такта для 170МГц)
FLASH->ACR |= FLASH_ACR_LATENCY_4WS;
// 6. Включаем PLL
RCC->CR |= RCC_CR_PLLON;
while (!(RCC->CR & RCC_CR_PLLRDY))
;
// 7. Переключаем системную частоту на PLL
RCC->CFGR &= ~RCC_CFGR_SW;
RCC->CFGR |= RCC_CFGR_SW_PLL;
while ((RCC->CFGR & RCC_CFGR_SWS) != RCC_CFGR_SWS_PLL)
;
// 8. Обновляем переменную SystemCoreClock
SystemCoreClockUpdate();
}
void SystemInit(void)
{
/* FPU settings ------------------------------------------------------------*/
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
SCB->CPACR |= ((3UL << (10*2))|(3UL << (11*2))); /* set CP10 and CP11 Full Access */
#endif
SystemClockInit();
/* FPU settings ------------------------------------------------------------*/
#if (__FPU_PRESENT == 1) && (__FPU_USED == 1)
SCB->CPACR |= ((3UL << (10 * 2)) | (3UL << (11 * 2))); /* set CP10 and CP11 Full Access */
#endif
/* Configure the Vector Table location add offset address ------------------*/
#if defined(USER_VECT_TAB_ADDRESS)
SCB->VTOR = VECT_TAB_BASE_ADDRESS | VECT_TAB_OFFSET; /* Vector Table Relocation in Internal SRAM */
#endif /* USER_VECT_TAB_ADDRESS */
#endif /* USER_VECT_TAB_ADDRESS */
}
/**
* @brief Update SystemCoreClock variable according to Clock Register Values.
* The SystemCoreClock variable contains the core clock (HCLK), it can
* be used by the user application to setup the SysTick timer or configure
* other parameters.
*
* @note Each time the core clock (HCLK) changes, this function must be called
* to update SystemCoreClock variable value. Otherwise, any configuration
* based on this variable will be incorrect.
*
* @note - The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
*
* - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(**)
*
* - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(***)
*
* - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(***)
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
*
* (**) HSI_VALUE is a constant defined in stm32g4xx_hal.h file (default value
* 16 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* (***) HSE_VALUE is a constant defined in stm32g4xx_hal.h file (default value
* 24 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
*
* - The result of this function could be not correct when using fractional
* value for HSE crystal.
*
* @param None
* @retval None
*/
* @brief Update SystemCoreClock variable according to Clock Register Values.
* The SystemCoreClock variable contains the core clock (HCLK), it can
* be used by the user application to setup the SysTick timer or configure
* other parameters.
*
* @note Each time the core clock (HCLK) changes, this function must be called
* to update SystemCoreClock variable value. Otherwise, any configuration
* based on this variable will be incorrect.
*
* @note - The system frequency computed by this function is not the real
* frequency in the chip. It is calculated based on the predefined
* constant and the selected clock source:
*
* - If SYSCLK source is HSI, SystemCoreClock will contain the HSI_VALUE(**)
*
* - If SYSCLK source is HSE, SystemCoreClock will contain the HSE_VALUE(***)
*
* - If SYSCLK source is PLL, SystemCoreClock will contain the HSE_VALUE(***)
* or HSI_VALUE(*) multiplied/divided by the PLL factors.
*
* (**) HSI_VALUE is a constant defined in stm32g4xx_hal.h file (default value
* 16 MHz) but the real value may vary depending on the variations
* in voltage and temperature.
*
* (***) HSE_VALUE is a constant defined in stm32g4xx_hal.h file (default value
* 24 MHz), user has to ensure that HSE_VALUE is same as the real
* frequency of the crystal used. Otherwise, this function may
* have wrong result.
*
* - The result of this function could be not correct when using fractional
* value for HSE crystal.
*
* @param None
* @retval None
*/
void SystemCoreClockUpdate(void)
{
uint32_t tmp, pllvco, pllr, pllsource, pllm;
@ -232,35 +275,35 @@ void SystemCoreClockUpdate(void)
/* Get SYSCLK source -------------------------------------------------------*/
switch (RCC->CFGR & RCC_CFGR_SWS)
{
case 0x04: /* HSI used as system clock source */
SystemCoreClock = HSI_VALUE;
break;
case 0x04: /* HSI used as system clock source */
SystemCoreClock = HSI_VALUE;
break;
case 0x08: /* HSE used as system clock source */
SystemCoreClock = HSE_VALUE;
break;
case 0x08: /* HSE used as system clock source */
SystemCoreClock = HSE_VALUE;
break;
case 0x0C: /* PLL used as system clock source */
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN
SYSCLK = PLL_VCO / PLLR
*/
pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);
pllm = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLM) >> 4) + 1U ;
if (pllsource == 0x02UL) /* HSI used as PLL clock source */
{
pllvco = (HSI_VALUE / pllm);
}
else /* HSE used as PLL clock source */
{
pllvco = (HSE_VALUE / pllm);
}
pllvco = pllvco * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 8);
pllr = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> 25) + 1U) * 2U;
SystemCoreClock = pllvco/pllr;
break;
case 0x0C: /* PLL used as system clock source */
/* PLL_VCO = (HSE_VALUE or HSI_VALUE / PLLM) * PLLN
SYSCLK = PLL_VCO / PLLR
*/
pllsource = (RCC->PLLCFGR & RCC_PLLCFGR_PLLSRC);
pllm = ((RCC->PLLCFGR & RCC_PLLCFGR_PLLM) >> 4) + 1U;
if (pllsource == 0x02UL) /* HSI used as PLL clock source */
{
pllvco = (HSI_VALUE / pllm);
}
else /* HSE used as PLL clock source */
{
pllvco = (HSE_VALUE / pllm);
}
pllvco = pllvco * ((RCC->PLLCFGR & RCC_PLLCFGR_PLLN) >> 8);
pllr = (((RCC->PLLCFGR & RCC_PLLCFGR_PLLR) >> 25) + 1U) * 2U;
SystemCoreClock = pllvco / pllr;
break;
default:
break;
default:
break;
}
/* Compute HCLK clock frequency --------------------------------------------*/
/* Get HCLK prescaler */
@ -269,17 +312,14 @@ void SystemCoreClockUpdate(void)
SystemCoreClock >>= tmp;
}
/**
* @}
*/
/**
* @}
*/
* @}
*/
/**
* @}
*/
/**
* @}
*/
* @}
*/

View File

@ -32,7 +32,7 @@ extern volatile int16_t gyro_x, gyro_y, gyro_z;
// Коэффициенты фильтр
#define GYRO_SCALE 65.5f // Для +-500: 32768/500
#define RAD_TO_DEG 57.29578f // Преобразование радиан в градусы
#define DT 0.001f // Период дискретизации (10 мс)
#define DT 0.0001f // Период дискретизации (100 мкс)
// Настраиваемые коэффициенты фильтрации
extern volatile float accel_filter_coeff; // Коэффициент ФНЧ для акселерометра (0.1-0.5)

View File

@ -0,0 +1,71 @@
#include <StepperMotorDriver.h>
int16_t speedStepper1 = 0;
int16_t setSpeed1 = 200;
int16_t speedStepper2 = 0;
int16_t setSpeed2 = 200;
#define minSpeed 10.0f
#define maxSpeed 400.0f
void SetStepper1RotateSpeed(int16_t* speedStepper1)
{
if (abs(*speedStepper1) <= minSpeed | abs(*speedStepper1) >= maxSpeed)
{
TIM2->CCR1 = 0;
TIM2->EGR |= TIM_EGR_UG;
return;
}
// Управление направлением
if (*speedStepper1 > 0)
GPIOA->BSRR = GPIO_BSRR_BR1; // DIR = 0 (LOW)
else
GPIOA->BSRR = GPIO_BSRR_BS1; // DIR = 1 (HIGH)
uint32_t absSpeed = (*speedStepper1 > 0) ? *speedStepper1 : -(*speedStepper1);
uint32_t F_set = (N_FULL_STEP * MICROSTEPPING * absSpeed) / 60;
if (F_set == 0) return;
uint32_t arr_set = F_CLK / (PWM_PSC * F_set);
uint32_t ccr_set = (uint32_t)(arr_set * Duty);
if (arr_set < 10) arr_set = 10;
if (ccr_set < 1) ccr_set = 1;
TIM2->ARR = arr_set - 1;
TIM2->CCR1 = ccr_set;
TIM2->EGR |= TIM_EGR_UG;
}
//---------------------------------------------------------------------------------------------------------------
void SetStepper2RotateSpeed(int16_t* speedStepper2)
{
if (abs(*speedStepper2) <= minSpeed & abs(*speedStepper2) >= maxSpeed)
{
TIM2->CCR1 = 0;
TIM2->EGR |= TIM_EGR_UG;
return;
}
// Управление направлением
if (*speedStepper2 > 0)
GPIOB->BSRR = GPIO_BSRR_BR1; // DIR = 0 (LOW)
else
GPIOB->BSRR = GPIO_BSRR_BS1; // DIR = 1 (HIGH)
uint32_t absSpeed = (*speedStepper2 > 0) ? *speedStepper2 : -(*speedStepper2);
uint32_t F_set = (N_FULL_STEP * MICROSTEPPING * absSpeed) / 60;
if (F_set == 0) return;
uint32_t arr_set = F_CLK / (PWM_PSC * F_set);
uint32_t ccr_set = (uint32_t)(arr_set * Duty);
if (arr_set < 10) arr_set = 10;
if (ccr_set < 1) ccr_set = 1;
TIM3->ARR = arr_set - 1;
TIM3->CCR3 = ccr_set;
TIM3->EGR |= TIM_EGR_UG;
}

View File

@ -0,0 +1,16 @@
#include "stm32g431xx.h"
#include <math.h>
#define N_FULL_STEP 200
#define MICROSTEPPING 8
#define F_CLK 170000000
#define PWM_PSC 17
#define Duty 0.05f
extern int16_t speedStepper1;
extern int16_t setSpeed1;
extern int16_t speedStepper2;
extern int16_t setSpeed2;
void SetStepper1RotateSpeed(int16_t* speedStepper1);
void SetStepper2RotateSpeed(int16_t* speedStepper2);

View File

@ -2233,6 +2233,12 @@
<file>
<name>$PROJ_DIR$\Drivers\LSM6DS3.h</name>
</file>
<file>
<name>$PROJ_DIR$\Drivers\StepperMotorDriver.c</name>
</file>
<file>
<name>$PROJ_DIR$\Drivers\StepperMotorDriver.h</name>
</file>
</group>
<group>
<name>Utils</name>

View File

@ -2959,6 +2959,12 @@
<file>
<name>$PROJ_DIR$\Drivers\LSM6DS3.h</name>
</file>
<file>
<name>$PROJ_DIR$\Drivers\StepperMotorDriver.c</name>
</file>
<file>
<name>$PROJ_DIR$\Drivers\StepperMotorDriver.h</name>
</file>
</group>
<group>
<name>Utils</name>

View File

@ -1,8 +1,8 @@
#include "PID.h"
float KP = 100;
float KI = 1;
float KD = 1;
float KI = 0;
float KD = 10;
float integral = 0;
float lastError = 0;
float limit = 1000; //ограничение интегральной составляющей
@ -41,3 +41,15 @@ float pid_update(float target, float current, float dt)
// float output = pPart + iPart + dPart;
// return output; //Управляющее воздействие/крутящий момент
// }
#define Mc 0.21f //момент сцепления
#define J 820.0f //инерция ротора
#define dt 0.0001f
float integral_perevod = 0;
float perevod (float M){
integral_perevod += (M - Mc)*dt;
int omega = (int)(1.0f/J*integral_perevod);
return omega * 60.0f / 9.5493f;
}

View File

@ -1,3 +1,5 @@
#include <math.h>
#include "StepperMotorDriver.h"
float pid_update(float target, float current, float dt);
float perevod(float pid_result);

View File

@ -2,6 +2,7 @@
#include <math.h>
#include "LSM6DS3.h"
#include "PID.h"
#include <StepperMotorDriver.h>
//---------------------------------------------------------------------------------------------------------------
//
@ -9,18 +10,16 @@
// PA8 - I2C3_SCL
//
//---------------------------------------------------------------------------------------------------------------
//---------------------------------------------------------------------------------------------------------------
//---------------------------------------------------------------------------------------------------------------
//---------------------------------------------------------------------------------------------------------------
volatile uint32_t counter = 0;
float res;
int res;
float u;
extern "C" void TIM2_IRQHandler(void)
extern "C" void TIM4_IRQHandler(void)
{
if (TIM2->SR & TIM_SR_UIF) // Проверить флаг обновления
if (TIM4->SR & TIM_SR_UIF) // Проверить флаг обновления
{
TIM2->SR &= ~TIM_SR_UIF; // Сбросить флаг
TIM4->SR &= ~TIM_SR_UIF; // Сбросить флаг
counter++;
@ -36,7 +35,7 @@ extern "C" void TIM2_IRQHandler(void)
if (fabsf(u) < 0.001f){
u = 0.001f;
}
res = (48/u);
res = perevod(u);
}
}
//---------------------------------------------------------------------------------------------------------------
@ -46,26 +45,32 @@ int main()
{
//-----------------------------------------------------------------------------------------------------------
RCC->AHB2ENR |= RCC_AHB2ENR_GPIOAEN; // тактирование порт A
RCC->AHB2ENR |= RCC_AHB2ENR_GPIOBEN; // тактирование порт В
RCC->AHB2ENR |= RCC_AHB2ENR_GPIOCEN; // тактирование порт C
RCC->APB1ENR1 |= RCC_APB1ENR1_I2C3EN; // тактирование I2C3
RCC->APB1ENR1 |= RCC_APB1ENR1_TIM4EN; // Включить тактирование TIM4
RCC->APB1ENR1 |= RCC_APB1ENR1_TIM2EN; // Включить тактирование TIM2
RCC->APB1ENR1 |= RCC_APB1ENR1_TIM3EN; // Включить тактирование TIM3
//-----------------------------------------------------------------------------------------------------------
GPIOC->MODER &= ~GPIO_MODER_MODE6_Msk; // очистка пина C6 - использую под LED
GPIOC->MODER &= ~GPIO_MODER_MODE11_Msk; // очистка пина C11
GPIOA->MODER &= ~GPIO_MODER_MODE8_Msk; // очистка пина A8
GPIOA->MODER &= ~(GPIO_MODER_MODE0_Msk); // очистка пина PA0
GPIOB->MODER &= ~(GPIO_MODER_MODE0_Msk); // очистка пина PB0
GPIOA->MODER &= ~(GPIO_MODER_MODE1_Msk); // очистка пина PA1
GPIOB->MODER &= ~(GPIO_MODER_MODE1_Msk); // очистка пина PB1
//-----------------------------------------------------------------------------------------------------------
GPIOC->MODER |= GPIO_MODER_MODE6_0; // установка бита выхода
GPIOA->MODER |= GPIO_MODER_MODE8_1; // установка бита режима альтернативной функции
GPIOC->MODER |= GPIO_MODER_MODE11_1; // установка бита режима альтернативной функции
GPIOA->MODER |= (GPIO_MODER_MODE0_1);// установка бита режима альтернативной функции
GPIOB->MODER |= (GPIO_MODER_MODE0_1);// установка бита режима альтернативной функции
GPIOA->MODER |= (GPIO_MODER_MODE1_0);// установка бита выхода
GPIOB->MODER |= (GPIO_MODER_MODE1_0);// установка бита выхода
//-----------------------------------------------------------------------------------------------------------
GPIOA->BSRR = GPIO_BSRR_BR1; // установка в низкий A1
GPIOB->BSRR = GPIO_BSRR_BR1; // установка в низкий B1
GPIOC->BSRR = GPIO_BSRR_BS6; // установка в высокий C6
//------------------------------------------------------------------------- ----------------------------------
RCC->APB1ENR1 |= RCC_APB1ENR1_TIM2EN; // Включить тактирование TIM2
TIM2->PSC = 16 - 1; // Предделитель 16 МГц / 16 = 1000 кГц
TIM2->ARR = 1000 - 1; // Автоматическая перезагрузка (0.001 секунда)
TIM2->DIER |= TIM_DIER_UIE; // Разрешить прерывание по обновлению
TIM2->CR1 |= TIM_CR1_CEN; // Включить таймер
NVIC_EnableIRQ(TIM2_IRQn);
NVIC_SetPriority(TIM2_IRQn, 15); // Уровень приоритета
//-----------------------------------------------------------------------------------------------------------
GPIOA->OTYPER &= ~GPIO_OTYPER_OT8_Msk; // Сброс режима
GPIOC->OTYPER &= ~GPIO_OTYPER_OT11_Msk; // Сброс режима
@ -84,18 +89,52 @@ int main()
//-----------------------------------------------------------------------------------------------------------
GPIOA->AFR[1] &= ~GPIO_AFRH_AFSEL8_Msk; // сброс альтернативной функции
GPIOC->AFR[1] &= ~GPIO_AFRH_AFSEL11_Msk; // сброс альтернативной функции
GPIOA->AFR[0] &= ~(GPIO_AFRL_AFRL0); // сброс альтернативной функции
GPIOB->AFR[0] &= ~(GPIO_AFRL_AFRL0); // сброс альтернативной функции
//-----------------------------------------------------------------------------------------------------------
GPIOA->AFR[1] |= (2U << GPIO_AFRH_AFSEL8_Pos); // установка AF2
GPIOC->AFR[1] |= (8U << GPIO_AFRH_AFSEL11_Pos); // Установка AF8
GPIOA->AFR[0] |= (1 << GPIO_AFRL_AFSEL0_Pos);// установка бита режима альтернативной функции
GPIOB->AFR[0] |= (2 << GPIO_AFRL_AFSEL0_Pos);// установка бита режима альтернативной функции
//-----------------------------------------------------------------------------------------------------------
TIM4->PSC = 17 - 1; // Предделитель 170 МГц / 17 = 10000 кГц
TIM4->ARR = 1000 - 1; // Автоматическая перезагрузка (0.0001 секунда)
TIM4->DIER |= TIM_DIER_UIE; // Разрешить прерывание по обновлению
TIM4->CR1 |= TIM_CR1_CEN; // Включить таймер
NVIC_EnableIRQ(TIM4_IRQn); // Включение прерывания
NVIC_SetPriority(TIM4_IRQn, 15); // Уровень приоритета
//-----------------------------------------------------------------------------------------------------------
TIM2->PSC = 17 - 1; // Предделитель 170 МГц / 170 = 1000 кГц
TIM2->ARR = 1875 - 1; // Автоматическая перезагрузка
TIM2->CCR1 = 900; // Заполненность ШИМ
TIM2->CCMR1 &= ~TIM_CCMR1_OC1M_Msk; // Очистка режима работы канала 1
TIM2->CCMR1 |= (6 << TIM_CCMR1_OC1M_Pos); //Установка режима канала 1 в режим PWM Mode 1
TIM2->CCMR1 |= TIM_CCMR1_OC1PE; // preload для канала 1
TIM2->CCER |= TIM_CCER_CC1E; // Выход для канала 1
TIM2->CR1 |= TIM_CR1_ARPE; // Автоперезагрузка и счет
TIM2->EGR |= TIM_EGR_UG; // Обновления регистров
TIM2->CR1 |= TIM_CR1_CEN; // Запуск таймера
//-----------------------------------------------------------------------------------------------------------
TIM3->PSC = 17 - 1; // Предделитель 170 МГц / 170 = 1000 кГц
TIM3->ARR = 1875 - 1; // Автоматическая перезагрузка
TIM3->CCR3 = 900; // Заполненность ШИМ
TIM3->CCMR2 &= ~TIM_CCMR2_OC3M_Msk; // Очистка режима работы канала 2
TIM3->CCMR2 |= (6 << TIM_CCMR2_OC3M_Pos); //Установка режима канала 2 в режим PWM Mode 1
TIM3->CCMR2 |= TIM_CCMR2_OC3PE; // preload для канала 2
TIM3->CCER |= TIM_CCER_CC3E; // Выход для канала 2
TIM3->CR1 |= TIM_CR1_ARPE; // Автоперезагрузка и счет
TIM3->EGR |= TIM_EGR_UG; // Обновления регистров
TIM3->CR1 |= TIM_CR1_CEN; // Запуск таймера
//-----------------------------------------------------------------------------------------------------------
I2C3->CR1 &= ~I2C_CR1_PE; // Отключение I2C3
//-----------------------------------------------------------------------------------------------------------
// 400 кГц
I2C3->TIMINGR = (0 << I2C_TIMINGR_PRESC_Pos) | // PRESC=0 (делитель 1) -> I2CCLK=16 МГц
(3 << I2C_TIMINGR_SCLDEL_Pos) | // SCLDEL=3 -> t_HD;STA=0.25 мкс
(1 << I2C_TIMINGR_SDADEL_Pos) | // SDADEL=1 -> t_HD;DAT=0.0625 мкс
(15 << I2C_TIMINGR_SCLH_Pos) | // SCLH=15 -> t_HIGH=1 мкс
(15 << I2C_TIMINGR_SCLL_Pos); // SCLL=15 -> t_LOW=1 мкс
I2C3->TIMINGR = (7 << I2C_TIMINGR_PRESC_Pos) | // PRESC=7 -> I2CCLK=21.25 МГц
(4 << I2C_TIMINGR_SCLDEL_Pos) | // SCLDEL=8 -> t_HD;STA=0.38 мкс
(0 << I2C_TIMINGR_SDADEL_Pos) | // SDADEL=4 -> t_HD;DAT=0.019 мкс
(25 << I2C_TIMINGR_SCLH_Pos) | // SCLH=16 -> t_HIGH=0.75 мкс
(25 << I2C_TIMINGR_SCLL_Pos); // SCLL=32 -> t_LOW=1.51 мкс
//-----------------------------------------------------------------------------------------------------------
I2C3->CR1 |= I2C_CR1_PE; // Включение I2C3
for (volatile int i = 0; i < 100000; ++i)
@ -104,8 +143,22 @@ int main()
while (I2C3->ISR & I2C_ISR_BUSY)
__NOP(); // Ждём освобождения линии I2C3
//-----------------------------------------------------------------------------------------------------------
//-----------------------------------------------------------------------------------------------------------
LSM6DS3_Init();
while (1)
{
if(setSpeed1 != speedStepper1)
{
speedStepper1 = setSpeed1;
SetStepper1RotateSpeed(&speedStepper1);
}
if(setSpeed2 != speedStepper2)
{
speedStepper2 = setSpeed2;
SetStepper2RotateSpeed(&speedStepper2);
}
}
}